JIEI | 王凯军:从好氧颗粒污泥发展看科研的基因和终极目标是什么?
编者按:为什么好氧颗粒污泥技术、厌氧氨氧化等几项被誉为改变水处理技术格局的关键技术都源自荷兰?为什么荷兰人敢说他们是用颗粒污泥处理污水的?为什么只有荷兰成功将好氧颗粒污泥技术进行了大规模的产业推广?
清华大学王凯军教授在2019环保产业创新发展大会高峰论坛上的发言给出了答案。他从科研导向和创新传承两个角度综合思考这些问题,系统回顾了水污染控制技术的线性发展历程,并追溯了好氧颗粒污泥技术的发展与技术关键。通过独特视角,带领大家从好氧颗粒污泥看科研的基因,并指出只以文章为导向而不以工程需要为导向是一个科研误区。
关于好氧颗粒污泥,我们忍不住思考:为什么我们在SCI论文全球称雄的同时,产业化进展却甚微?这个现象背后,则是更深刻的问题:科研的目标和终点在哪里?可能在工程上,可能在企业上,但肯定不在SCI上。
(本文根据其发言整理,未经本人审阅)
水污染控制技术的发展趋势
问题导向的污水处理技术发展历史
水处理技术的发展理念:工艺综合性
与污水处理工艺糖葫芦串式的线性发展模式不同,我们能否更加追求系统的综合性?膜技术的出现,给出了这种可能性。它解决了过滤与沉淀一体化的问题,使技术相对综合,工艺流程相对简化,主要靠膜的精细过滤和浓缩,MBR工艺具有反应高效、出水水质好,省掉二沉池,节省占地等优点,污泥浓度可保持8-10g/L。
国外好氧颗粒污泥用的新型反应器由于是颗粒污泥,其污泥量大于10g/L,污泥浓度甚至能达到15g/L,生物量大,可以同时解决有机物、氮、磷去除问题,出水水质良好。此外,系统高效,沉降速度快,省掉了二沉池,占地面积小,可与MBR相媲美。
好氧颗粒污泥的发展
荷兰人常说他们是用颗粒污泥的方式处理污水,为什么这么说?首先来追溯厌氧颗粒污泥的发现。1972年,Lettinga在处理甜菜废水的6 m3/d的UASB中试装置中发现了颗粒污泥。1975年,在 WUR 开始全面系统的研究污泥颗粒化现象。可以说,在厌氧工业废水上,他们最早发明和应用了厌氧颗粒污泥技术,全世界高浓度工业废水采用厌氧颗粒污泥的方式(UASB或EGSB)来进行处理。荷兰科学家不仅发现了著名的厌氧氨氧化现象,第一个生产性的厌氧氨氧化颗粒污泥装置也是荷兰人做出来的。荷兰Paques公司在10多年在中国沈阳的红梅味精厂建成了全球最大的同步厌氧氨氧化装置,反应器池容11000m3,每天处理80吨NH4-N。荷兰还有生物脱硫颗粒污泥技术。荷兰是第一个也是世界上唯一一个对好氧颗粒污泥技术实现了工业化的国家。从厌氧颗粒污泥到厌氧氨氧化颗粒污泥再到好氧颗粒污泥,因此,荷兰人有足够的自信说“荷兰是用颗粒污泥的方式处理污水的”。
为什么好氧颗粒污泥在荷兰这么受欢迎呢?2013年我到荷兰参观现场,从在线仪表上看其处理后水质非常好,总磷可达到0.09mg/L、总氮可达到7.9mg/L。据管理人员介绍这还是没有加优化的结果,优化之后总氮、总磷效果会更好。文献报道第一个三万吨规模的污水处理厂的数据显示,冬季总氮小于8mg/L,夏季小于5mg/L,出水水质非常好。2015年,在荷兰鹿特丹建成了一个几十万吨的污水厂,用传统工艺达到非常好的出水水质,然而该厂被荷兰人认为自建成之后就落后了。原因何在?因为采用好氧颗粒污泥技术以后,可节省土地70%,节省能耗30%。
全球好氧颗粒污泥文献调研
事实上,好氧颗粒污泥并不是一个新的发现。从上世纪70年代发现厌氧颗粒污泥后,就不断有培养好氧颗粒污泥的尝试和报道。我们通过调研全世界范围内与好氧颗粒污泥有关的研究后发现,从2000年至2019年近20年时间全球共发表与好氧颗粒污泥有关的文章3000多篇,其中中国就有1000多篇。假设平均一家研究机构可发表10篇论文,则表示有300多家机构在研究好氧颗粒污泥,其中中国则至少100家。可以说,中国关于好氧颗粒污泥技术的研究文章在世界上遥遥领先。这应该是以SCI为导向的一个典型案例,大多数研究者为发论文而发论文。然而,目前国际上却只有荷兰Mark团队一家研究机构取得了突破。这是值得我们认真思考的一个问题:为什么颗粒污泥均是由荷兰人率先发现和应用的?
好氧颗粒污泥的技术关键
认真分析Mark研究组好氧颗粒污泥理论的形成过程,我们可以得到很多启示。首先,在众多因素中如何识别关键因素?对Mark组的成果研究发现,在他们前期发表的一些论文里主要以剪贴力为主,直到2004年提出了缓慢生长的细菌的观点,同时提出碳、氮、磷的同步去除形成颗粒污泥核心等关键因素后,才进入了正确轨道。他们最终提出了好氧颗粒污泥的“丰盛-饥饿”理论。
好氧颗粒污泥的“丰盛-饥饿”理论:首先,采用升流式厌氧进水(特点一、二),发展厌氧的聚磷菌使缓慢成长的细菌,形成一个核心(特点三)。厌氧是丰盛阶段,有很多食物,好氧是饥饿阶段;其次是快速沉淀的淘汰方式(特点四)_,有利于好氧颗粒污泥的成长。以上这四点就是Mark好氧颗粒污泥理论的核心,比较这些理论也就不难理解为什么全世界3000多篇文章、300多个研究机构,却只有荷兰人成功了。
在此之前用过很多种方法培养都没有成功,如体外纯氧供氧,加大曝气量的方式等等。成功培养出的好氧颗粒污泥,能够同时取得碳、氮、磷的同步去除。关于这一条,国内外的一些研究者并不掌握。荷兰一家咨询公司到巴西做项目,跟巴西工程师交流时听到巴西工程师说他们国家并没有除磷需求,所以要求颗粒污泥工艺不需要设计除磷阶段。由此可见,他们并没有体会到缓慢生长细菌形成了颗粒污泥的核心这一关键环节。以缓慢生长细菌为核心的好氧颗粒污泥形成之后非常稳定,拿出来1-2个月都不会解体。如果以其他方式培养颗粒污泥,不到一个星期污泥就会解体。所以,一个好的理论指导很快发展成功了好氧颗粒污泥。如果说厌氧颗粒污泥是荷兰人发明的是偶然(此前美国McCarty厌氧滤池也实现了颗粒污泥);厌氧氨氧化颗粒的橘红色是天生的荷兰色也是荷兰学者的戏谑之说;那么,好氧颗粒污泥则是历史的必然。可能颗粒污泥真的特别钟爱荷兰人吧。对比荷兰Lettinga教授提出的厌氧颗粒污泥培养的指导原则和荷兰Delft大学Mark教授提出的好氧颗粒污泥“丰盛-饥饿”理论,我们不得不感叹:科学技术也是有基因和传承的。
总结来看,培养生长缓慢的微生物是核心环节,加上合适的生长形式与正确的运行方式,并借助厌氧升流技术逐步增加负荷,同时增加产生的冲洗淘汰方式,就可以保持厌氧丝状菌的竞争优势。
污水处理技术发展趋势
前文提到污水处理技术发展一直是以问题为导向,随着环境问题的不断出现,技术不断叠加,污水处理技术流程也在不断增加,使得系统日益复杂,处理成本日益增加,系统的安全性便随之降低。在我国一个典型的例子是污水处理要求达到一级A标准和Ⅳ类水标准,其中Ⅳ类水标准要通过过滤或曝气生物滤池才可达到。这也使得我国的污水处理工艺技术路线深受诟病。
与污水处理工艺糖葫芦串式线性发展模式不同,国外好氧颗粒污泥的技术则提供了一个工艺更加集成,更加综合的发展方向。新型反应器由于是颗粒污泥,其污泥量大于10g/L,污泥浓度甚至能达到15g/L,生物量大,可以同时解决有机物、氮、磷去除问题,出水水质良好。此外,系统高效,不用二沉池,占地面积小。
从污水处理系统的发展来看,今后仍会不断推出新的要求。但是,污水处理技术能否不以简单叠加的方式发展?为什么在荷兰好氧颗粒污泥可以得到迅速推广?下面是一个典型的欧洲污水处理工艺案例。
欧洲目前采用传统的活性污泥工艺可以达到总氮10mg/L以下,总磷1mg /L以下。如果没有新的技术,我国用活性污泥工艺要达到京标A、京标B或天津标准、合肥标准,需要加膜工艺(MBE或UF)或曝气生物滤池和过滤。其中差距我认为主要与我国的整体管理水平有关。以后在欧洲一些人口密集地区将会执行更加严格的标准,其中总氮要达到2.2mg/L,总磷要达到0.1mg/L。大家可以思考,欧洲会采用什么工艺,我国采用什么工艺可以达到这个标准?
2015年,在荷兰鹿特丹建成了一个大型污水处理厂,然而该厂被荷兰人认为自2015年建成之后就落后了。原因何在?因为采用好氧颗粒污泥技术以后,二沉池可以全部取消,整体可节省土地70%,节省能耗30%。所以,除了简单的技术叠加方式,我们需要进一步思考技术本身的发展问题。
好氧颗粒污泥培养理论
这里重申一下好氧颗粒污泥的“丰盛-饥饿”理论:首先,采用升流式厌氧进水(特点一、二),发展厌氧的聚磷菌使缓慢成长的细菌形成一个核心(特点三)。其中,厌氧是丰盛阶段,有很多食物,好氧是饥饿阶段;其次是快速沉淀的淘汰方式(特点四),有利于好氧颗粒污泥的成长。以上这四点就是Mark好氧颗粒污泥理论的核心。
这里要说明的是,我们的实验是在5、6年前进行的,实验完成后没有发布,我们认为荷兰既然已经成功开发出生产性的好氧颗粒污泥工艺,大家通过文献和技术交流已经可以充分了解了这一重大进展。
然而,从最近几年国内对这一领域的研究成果看,大家似乎并没有真正掌握好氧颗粒污泥的精髓。仍然采用快速进水策略、好氧剪切力为主导的好氧颗粒污泥理论指导实验,这也是至今国内没有解决应用问题的原因之一。
对荷兰好氧颗粒污泥理论的验证性研究
为了验证Mark的好氧颗粒污泥理论,我们课题组在五、六年前做了几组实验。
1.第一组实验:对比国内外三种培养方式
通过完全曝气快速进水、存在完全混合状态的缺氧阶段后+曝气以及Mark的方式——升流式厌氧进水+曝气,三种好氧颗粒污泥的培养模式进行对比,分别观察结果。
三种好氧颗粒污泥培养模式对比
通过完全曝气的方式形成了颗粒污泥,颗粒污泥蓬松且越长越大,进一步运行很容易解体;缺氧区+曝气的方式也形成了相对好的颗粒污泥;而采用Mark的方式则形成了非常完美、漂亮的颗粒污泥。R1中颗粒污泥粒径分布呈两极分化,颗粒表面覆盖大量的丝状菌,核心呈深褐色,后期形成了超大颗粒污泥后解体。R2中颗粒污泥粒径集中在1.5-2.0mm,表面光滑致密,呈淡黄色球状。R3中好氧颗粒污泥呈淡黄色球状,表面光滑致密,平均粒径达到3.0-4.0mm。
2.第二组实验:乙酸和葡萄糖两种基质对好氧颗粒污泥的影响
基于荷兰的培养方式,我们分别以乙酸和葡萄糖为基质,验证不同基质种类对好氧颗粒污泥的影响。根据Mark的丰盛-饥饿理论,在厌氧阶段需要在系统中选择缓慢生长的微生物,其利用聚磷菌和聚糖菌,并快速将水中的挥发性有机酸(VFA)形成PHB或GAO。在好氧阶段利用复杂有机物——PHB的异氧微生物生长速率较慢,从而形成了颗粒污泥的核心,这是好氧颗粒污泥的形成最为关键的一步。以乙酸和葡萄糖两种作为基质时,仍然采用了传统培养模式与Mark提出的方式进行了进一步对比。可以得出结论:
基质种类对好氧颗粒污泥的影响
(1)采用同样的乙酸基质,传统颗粒污泥培养方式与Mark提出的培养方式的比较实验可以清楚地看出,Mark提出的培养方式(R2,图b和e)形成的好氧颗粒污泥性质是最为理想的,颗粒污泥形状规则,主要为球菌和短杆菌;
(2)采用乙酸基质的反应器(R1,图a和d),传统培养方式培养出的颗粒污泥呈不规则形状,颗粒污泥结构较为松散,主要是丝状菌占优势;
(3)在以葡萄糖为基质的反应器中(R3,图c和f):虽然颗粒污泥生长比较规则,但是表面和内部仍然有大量的丝状菌生长。
3、第三组实验:带有预酸化处理的好氧颗粒污泥新工艺
在好氧颗粒污泥培养阶段证明挥发酸是非常重要的,实验均采用葡萄糖作为基质。其中对照实验不进行预处理直接培养颗粒污泥,另外一个实验用一个反应器(R1)把葡萄糖先进行酸化,产生挥发性脂肪酸,促进好氧颗粒污泥生长。酸化采用升流式的水解池,然后接好氧颗粒污泥培养反应器(R2)。可以说,该实验是在融会贯通的基础上的一个创新性研究,形成了一个新的好氧颗粒污泥的培养和反应工艺。
(1)水解酸化反应器可以使50%以上的葡萄糖基质变成有机酸;
(2)对比发现水解后的颗粒污泥形成非常快,颗粒污泥尺寸较大。不水解的颗粒污泥则与小米粒一样大小。
(3)以葡萄糖为基质的微生物生长速率比较快,产率甚至可以达到10%。而挥发酸为主体的微生物生长速率则要慢很多(只有3%多一点)。因此,形成了缓慢生长的核心,也就形成了颗粒污泥生长好的方式。
这一系列实验充分验证了Mark的“丰盛-饥饿”好氧颗粒污泥的形成理论,同样也表明在对好氧颗粒污泥进行的大量研究中,我们很多研究者面对真理视而不见,我国乃至全世界范围的大多数研究仍然以发表文章为导向,而不是以工程应用为导向,这是一个科研误区,误人误己误国。